Mostrando postagens com marcador temperatura. Mostrar todas as postagens
Mostrando postagens com marcador temperatura. Mostrar todas as postagens

terça-feira, 9 de outubro de 2018

O Quarto Estado da Matéria

Em nossos estudos sobre heliofísica vamos encontrar muitas referências a algo chamado Plasma, o quarto estado da matéria, portanto temos que compreender seus fundamentos. O sol, como a maioria das estrelas, é uma imensa bola de plasma…O vento solar é feito de hidrogênio (95%) e Hélio (4%) e de carbono, nitrogênio, oxigênio, néon, magnésio, silício e ferro ( 1%). Estes átomos estão todos na forma de íons positivos, o que significa que perderam elétrons porque a temperatura é muito alta. Portanto, os ventos solares são feitos de íons positivos. Chamamos isso de plasma.

O Plasma não é um gás, líquido ou sólido, é o quarto estado da matéria. O plasma muitas vezes se comporta como um gás, exceto que ele conduz eletricidade e é afetado por campos magnéticos. O plasma é comum em escala astronômica. O “fogo” (lembre-se, não existe fogo no Sol e sim fusão nuclear) do Sol é composto por plasma. Lâmpadas fluorescentes e neon contêm plasma.
Na maioria dos casos, a matéria na Terra tem elétrons que orbita em torno do átomo do núcleo (eletrosfera). Os elétrons carregados negativamente são atraídos para o núcleo carregado positivamente (lembre-se, os opostos se atraem). Assim, os elétrons permanecem em órbita ao redor do núcleo.

Quando a temperatura fica muito alta, os elétrons podem escapar de sua órbita ao redor do núcleo do átomo. Quando o elétron(s) deixam essa órbita para trás, chamamos de um íon com carga positiva. O aquecimento de um gás pode ionizar suas moléculas ou átomos (reduzir ou aumentar o número de elétrons), assim transformando-o em um plasma.


O plasma é feito de partículas eletricamente carregadas, elas são fortemente influenciadas por campos elétricos e magnéticos, enquanto gases neutros não são. Um exemplo dessa influência é a captura de partículas energéticas carregadas ao longo das linhas do campo geomagnético para formar o cinturão de radiação Van Allen.
O cinturão de Van Allen se estende acima do equador, a uma altitude de cerca de 6.437 quilômetros. Esse cinturão é povoado por prótons muito energéticos na faixa de MeV 10-100 (um subproduto de colisões de raios cósmicos com os átomos da atmosfera). A radiação cósmica tem uma intensidade muito baixa (comparável à luz das estrelas). Estas partículas podem facilmente penetrar naves espaciais e a exposição prolongada pode danificar os instrumentos e ser um perigo para os astronautas.


Resumindo: O cinturão de Van Allen é composto de partículas energéticas carregadas (isto é, um plasma) em torno da Terra, aprisionado pelo campo magnético terrestre.

domingo, 26 de agosto de 2018

Classificação das Estrelas

Basicamente as estrelas são classificadas por seus espectros, sua temperatura e luminosidade. Existem sete tipos principais de estrelas, O, B, A, F, G, K e M. Uma sequência de mais quente (O) para mais frias (M).


Somente esta classificação não fornece detalhes suficientes, os astrônomos então colocaram um número após a letra onde a G, por exemplo, é uma estrela como o nosso Sol. A cada número é um adicional de 10% para a próxima letra espectral. Por exemplo, o nosso Sol é classificado como uma estrela G2. Isto significa que esta a 20% em direção de uma estrela laranja da sequência principal.


Os astrônomos usam números romano no final da carta espectral para definir o tamanho e a luminosidade de uma estrela. Eles variam de supergigantes I a V, anãs ou estrelas da sequência principal. O nosso Sol é uma estrela da sequência principal, ele recebe a designação V.
Assim, a classificação completa do Sol é G2V.
Estrelas da sequência principal são estrelas que estão fundindo átomos de hidrogênio para formar átomos de hélio em seus núcleos. A maioria das estrelas do universo aproximadamente 90% são estrelas da sequência principal. O sol é uma estrela da sequência principal. Essas estrelas podem variar de cerca de um décimo da massa do Sol até 200 vezes maior.


As estrelas começam suas vidas como uma nuvem de poeira e gás. A gravidade atrai essas nuvens e uma pequena protoestrela é formada, que é alimentado pelo material solapado.
Quanto tempo uma estrela da sequência principal vive depende de quão grande ela é. Uma estrela de massa maior pode ter mais material, mas ele queima mais rápido justamente por ter massa maior devido as temperaturas mais elevadas do núcleo que são causadas por maiores forças gravitacionais.