Em nossos estudos sobre heliofísica vamos encontrar muitas referências a algo chamado Plasma, o quarto estado da matéria, portanto temos que compreender seus fundamentos. O sol, como a maioria das estrelas, é uma imensa bola de plasma…O vento solar é feito de hidrogênio (95%) e Hélio (4%) e de carbono, nitrogênio, oxigênio, néon, magnésio, silício e ferro ( 1%). Estes átomos estão todos na forma de íons positivos, o que significa que perderam elétrons porque a temperatura é muito alta. Portanto, os ventos solares são feitos de íons positivos. Chamamos isso de plasma.
O Plasma não é um gás, líquido ou sólido, é o quarto estado da matéria. O plasma muitas vezes se comporta como um gás, exceto que ele conduz eletricidade e é afetado por campos magnéticos. O plasma é comum em escala astronômica. O “fogo” (lembre-se, não existe fogo no Sol e sim fusão nuclear) do Sol é composto por plasma. Lâmpadas fluorescentes e neon contêm plasma.
Na maioria dos casos, a matéria na Terra tem elétrons que orbita em torno do átomo do núcleo (eletrosfera). Os elétrons carregados negativamente são atraídos para o núcleo carregado positivamente (lembre-se, os opostos se atraem). Assim, os elétrons permanecem em órbita ao redor do núcleo.
Quando a temperatura fica muito alta, os elétrons podem escapar de sua órbita ao redor do núcleo do átomo. Quando o elétron(s) deixam essa órbita para trás, chamamos de um íon com carga positiva. O aquecimento de um gás pode ionizar suas moléculas ou átomos (reduzir ou aumentar o número de elétrons), assim transformando-o em um plasma.
O plasma é feito de partículas eletricamente carregadas, elas são fortemente influenciadas por campos elétricos e magnéticos, enquanto gases neutros não são. Um exemplo dessa influência é a captura de partículas energéticas carregadas ao longo das linhas do campo geomagnético para formar o cinturão de radiação Van Allen.
O cinturão de Van Allen se estende acima do equador, a uma altitude de cerca de 6.437 quilômetros. Esse cinturão é povoado por prótons muito energéticos na faixa de MeV 10-100 (um subproduto de colisões de raios cósmicos com os átomos da atmosfera). A radiação cósmica tem uma intensidade muito baixa (comparável à luz das estrelas). Estas partículas podem facilmente penetrar naves espaciais e a exposição prolongada pode danificar os instrumentos e ser um perigo para os astronautas.
Resumindo: O cinturão de Van Allen é composto de partículas energéticas carregadas (isto é, um plasma) em torno da Terra, aprisionado pelo campo magnético terrestre.
Estudo e observação dos aspectos das ciências naturais como a astronomia, biologia, química, física as geociências na teoria e na prática. Incluindo temas relacionados ao clima espacial
Mostrando postagens com marcador partículas. Mostrar todas as postagens
Mostrando postagens com marcador partículas. Mostrar todas as postagens
terça-feira, 9 de outubro de 2018
sexta-feira, 21 de setembro de 2018
Raios Cósmicos Galácticos
Os raios cósmicos galácticos (GCR) são uma fonte de fundo altamente e energeticamente variável de partículas que constantemente bombardeiam a Terra. O GCR se origina fora do sistema solar e provavelmente é formado por eventos explosivos como uma supernova. Essas partículas altamente energéticas consistem essencialmente de todos os elementos que variam de hidrogênio, representando aproximadamente 89% do espectro GCR, ao urânio, que é encontrado somente em quantidades muito pequenas. Esses núcleos são totalmente ionizados, o que significa que todos os elétrons foram retirados desses átomos. Devido a isso, essas partículas interagem e são influenciadas por campos magnéticos. Os fortes campos magnéticos do Sol modulam o fluxo e o espectro de GCR na Terra.
Ao longo de um ciclo solar, o vento solar modula a fração das partículas de GCR de baixa energia, de modo que a maioria não pode penetrar na Terra perto do máximo solar. Perto do mínimo solar, na ausência de muitas ejeções de massa coronal e seus campos magnéticos correspondentes, as partículas GCR têm acesso mais fácil à Terra. Assim como o ciclo solar segue um ciclo de aproximadamente 11 anos, o mesmo acontece com o GCR, com seu máximo, chegando perto do mínimo solar. Mas, ao contrário do ciclo solar, onde explosões de atividade podem mudar o ambiente rapidamente, o espectro GCR permanece relativamente constante em energia e composição, variando apenas lentamente com o tempo.
Essas partículas carregadas estão viajando em frações da velocidade da luz e têm uma tremenda energia. Quando essas partículas atingem a atmosfera, grandes chuvas de partículas secundárias são criadas e algumas chegando ao chão. Essas partículas representam pouca ameaça para os seres humanos e os sistemas no solo, mas podem ser medidas com instrumentos sensíveis. O próprio campo magnético da Terra também trabalha para proteger a Terra dessas partículas, desviando-as amplamente das regiões equatoriais, mas fornecendo pouca proteção perto das regiões polares ou acima de aproximadamente 55 graus de latitude magnética (a latitude magnética e a latitude geográfica são diferentes devido à inclinação e deslocamento do campo magnético da Terra a partir do seu centro geográfico). Estas chuvas constante de partículas GCR em altas latitudes pode resultar em exposições aumentas de radiação para tripulantes e passageiros de aviões em altas latitudes e altitudes. Além disso, essas partículas podem facilmente passar ou parar em sistemas de satélites, às vezes depositando energia suficiente para resultar em erros ou danos em sistemas eletrônicos e sistemas espaciais.
Fonte: http://www.swpc.noaa.gov
Ao longo de um ciclo solar, o vento solar modula a fração das partículas de GCR de baixa energia, de modo que a maioria não pode penetrar na Terra perto do máximo solar. Perto do mínimo solar, na ausência de muitas ejeções de massa coronal e seus campos magnéticos correspondentes, as partículas GCR têm acesso mais fácil à Terra. Assim como o ciclo solar segue um ciclo de aproximadamente 11 anos, o mesmo acontece com o GCR, com seu máximo, chegando perto do mínimo solar. Mas, ao contrário do ciclo solar, onde explosões de atividade podem mudar o ambiente rapidamente, o espectro GCR permanece relativamente constante em energia e composição, variando apenas lentamente com o tempo.
Essas partículas carregadas estão viajando em frações da velocidade da luz e têm uma tremenda energia. Quando essas partículas atingem a atmosfera, grandes chuvas de partículas secundárias são criadas e algumas chegando ao chão. Essas partículas representam pouca ameaça para os seres humanos e os sistemas no solo, mas podem ser medidas com instrumentos sensíveis. O próprio campo magnético da Terra também trabalha para proteger a Terra dessas partículas, desviando-as amplamente das regiões equatoriais, mas fornecendo pouca proteção perto das regiões polares ou acima de aproximadamente 55 graus de latitude magnética (a latitude magnética e a latitude geográfica são diferentes devido à inclinação e deslocamento do campo magnético da Terra a partir do seu centro geográfico). Estas chuvas constante de partículas GCR em altas latitudes pode resultar em exposições aumentas de radiação para tripulantes e passageiros de aviões em altas latitudes e altitudes. Além disso, essas partículas podem facilmente passar ou parar em sistemas de satélites, às vezes depositando energia suficiente para resultar em erros ou danos em sistemas eletrônicos e sistemas espaciais.
Fonte: http://www.swpc.noaa.gov
Assinar:
Postagens (Atom)
-
Escala Mohs (1824) estabeleceu uma escala de 10 minerais de modo que esses valores podem ser estimado por comparação da dureza relativa de q...
-
Em nossas publicações constantemente vamos nos referir a campos magnéticos e eletromagnetismos. Esta breve introdução vai dar um noção dos c...
-
A Escala de Richter, oficialmente chamado de “Escala de Magnitude Richter “é um valor numérico utilizado para medir a força de terremotos. É...