Mostrando postagens com marcador Quasares com uma lente gravitacional de imagem dupla podem ajudar a descobrir o quão rápido o universo está se expandindo. Mostrar todas as postagens
Mostrando postagens com marcador Quasares com uma lente gravitacional de imagem dupla podem ajudar a descobrir o quão rápido o universo está se expandindo. Mostrar todas as postagens

sábado, 26 de janeiro de 2019

Quasares com uma lente gravitacional de imagem dupla podem ajudar a descobrir o quão rápido o universo está se expandindo.

Quão rápido o Universo está em expansão? Essa é uma questão que os astrônomos não conseguiram responder com precisão. Eles têm um nome para a taxa de expansão do Universo: A Constante de Hubble, ou Lei de Hubble. Mas as medições continuam chegando com valores diferentes, e os astrônomos têm debatido sobre essa questão há décadas.
A ideia básica por trás da medição da Constante do Hubble é observar fontes de luz distantes, geralmente um tipo de supernova ou estrelas variáveis chamadas de "velas padrão", e medir o desvio para o vermelho. Mas não importa o quanto os astrônomos façam isso, eles não podem chegar a um valor acordado, apenas uma gama de valores. Um novo estudo envolvendo quasares e lentes gravitacionais pode ajudar a resolver o problema.


Que o Universo está se expandindo não está em questão. Nós sabemos disso há cerca de 100 anos. A luz de galáxias distantes é deslocada para o vermelho à medida que se afastam de nós, e medir esse desvio para o vermelho produziu valores diferentes para a expansão universal.

A taxa de expansão é medida em quilômetros por segundo por megaparsec, escrita como (km / s) / Mpc. Assim, por exemplo, algo se expandindo a uma taxa de 10 (km / s) / Mpc significa que dois pontos no espaço 1 megaparsec separados (o equivalente a 3,26 milhões de anos-luz) estão se afastando uns dos outros a uma velocidade de 10 quilômetros por segundo.
Quando foi descoberto pela primeira vez na década de 1920, a taxa de expansão foi estimada em 625 kps / Mpc. Mas a partir da década de 1950, uma pesquisa melhor mediu-a como menos de 100 kps / Mpc. Nas últimas décadas, vários estudos mediram a taxa de expansão e chegaram a velocidades entre 67 a 77 kps / Mpc.

Mas a ciência não aceita uma série de respostas para algo que deveria ter um valor. Não seria ciência se isso acontecesse. Assim, os cientistas continuam tentando maneiras diferentes de medir a Constante de Hubble para ver se conseguem acertar, porque a constante de Hubble é mais do que apenas uma medida da expansão do universo.

Um novo estudo recém publicado no Monthly Notices da Royal Astronomical Society está tentando um novo método de medir a Constante de Hubble. A pesquisa é liderada por uma equipe de astrônomos da UCLA e conta com quasares distantes, cuja luz passa por lentes gravitacionais antes de atingir a Terra.

Os quasares são objetos ultraluminosos. Eles também são chamados de núcleos galácticos ativos, porque eles parecem serem causados ​​por buracos negros supermassivos no centro das galáxias. A radiação eletromagnética que eles emitem é causada pelo disco de acreção em torno do buraco negro. Conforme o disco de matéria ao redor do buraco acelera, emite uma enorme quantidade de energia.
Como os quasares são tão luminosos, eles podem ser vistos a grandes distâncias. Isso os torna não apenas objetos fascinantes de estudo, mas também úteis como marcadores para o estudo da Lei de Hubble.

A lente gravitacional ocorre quando a fonte de luz de um objeto extremamente distante, quasares neste estudo, encontra uma galáxia intermediária antes de atingir os observadores na Terra. A massa extrema da galáxia é suficiente para curvar a luz, semelhante à forma que uma lente de vidro faz. O resultado é uma espécie de efeito de "casa dos espelhos". A imagem abaixo mostra o que parece. A descoberta de lentes gravitacionais está mais intimamente associada com Einstein, embora não tenha sido até 1979 que foi observada.

Imagem de uma galáxia vermelha luminosa (LRG) gravitacionalmente distorcendo a luz de uma galáxia azul muito mais distante, uma técnica conhecida como lente gravitacional. Crédito: ESA / Hubble e NASA.
Este estudo se concentrou em quasares duplos. Um quasar duplo, às vezes chamado de quasar gêmeo, não são dois quasares próximos uns dos outros, mas sim um efeito de lente gravitacional. Com um duplo quasar, sua luz é focalizada em torno de uma galáxia intermediária antes de atingir a Terra, produzindo duas imagens do quasar. Nenhum estudo anterior os usou para tentar determinar a taxa de expansão do Universo.
Quando a luz do quasar é dobrada em torno da galáxia intermediária, produzindo duas imagens do mesmo quasar, ela cria uma oportunidade única de observação. A luz que cria as imagens separadas do quasar percorre um caminho diferente para cada imagem. Quando a luz do quasar flutua, há um atraso em cada uma das duas imagens.

Medindo o intervalo de tempo entre as cintilações e conhecendo a massa da galáxia interveniente, a equipe deduziu as distâncias entre a Terra, a galáxia de lentes e o quasar. Conhecer os redshifts do quasar e da galáxia permitiu que os cientistas estimassem a rapidez com que o universo está se expandindo.
Este estudo focalizou o duplo quasar chamado SDSS J1206 + 4332, e também se baseou em dados do Telescópio Espacial Hubble, dos observatórios Gemini e WM Keck, e da rede de Monitoramento Cosmológico de Lentes Gravitacionais, ou  COSMOGRAIL . A equipe passou vários anos fazendo imagens diárias do quasar duplo, o que lhes dava medidas muito precisas do tempo decorrido entre os piscar. Quando combinado com os outros dados, deu aos astrônomos uma das melhores medidas da Constante Hubble.

A equipe chegou a um valor de 72,5 quilômetros por segundo por megaparsec. Isso o coloca em linha com outras medidas que usaram supernovas distantes como velas padrão para medir a Constante de Hubble. Mas é cerca de 7% maior do que as medições que dependem do Fundo Cósmico de Microondas para medi-lo.

Este não é o fim do debate sobre a lei de Hubble. Ainda há essa diferença incômoda entre os métodos de medição. O que isso significa? "Se houver uma diferença real entre esses valores, isso significa que o universo é um pouco mais complicado", disse Treu. Treu também disse que uma das medições, ou até as três, estão erradas.
Fonte: Monthly Notices da Royal Astronomical Society, UNIVERSE TODAY.