domingo, 22 de abril de 2018

As Erupções Solares

Erupções solares são explosões gigantes no sol que enviam energia, luz e partículas em alta velocidade para o espaço. Estas erupções são frequentemente associados com tempestades solares magnéticas conhecidas como ejeção de massa coronal (CME). O número de erupções solares aumenta a cada 11 anos aproximadamente (ciclo de 11 anos), e estamos perto de outro máxima de atividade solar, provavelmente em 2013. Isso significa que mais erupções virão, algumas pequenos e outros grande o suficiente para enviar a sua radiação em direção à Terra e a todo sistema solar.
As maiores erupções são conhecidos como “flares classe X”, baseada num sistema de classificação que divide flares solares de acordo com a sua força. Classes B, C, M e X, parecidos com a escala Richter de terremotos, cada letra representa um aumento de 10 vezes na produção de energia. Assim, um classe X é dez vezes mais forte que um classe M e 100 vezes um classe C. Dentro de cada classe existe uma escala mais fina de 1 a 9. O gráfico abaixo é usado para mostrar os tipos de erupções.


Um Flare (erupção solar) é definido como uma variação súbita, rápida e intensa na superfície do Sol. Uma tempestade solar ocorre quando a energia magnética que se acumulou na atmosfera solar é liberada repentinamente. A radiação é emitida em praticamente todo o espectro eletromagnético, de ondas de rádio à emissão de raios-x e raios gama.
A quantidade de energia libertada é o equivalente de milhões de megaton de bombas de hidrogênio que explodem ao mesmo tempo. A primeira crise solares registrada na literatura astronômica foi em 01 de setembro de 1859. Dois cientistas, Richard C. Carrington e Richard Hodgson, observavam as manchas solares, no memento quando eles viram uma grande explosão na luz branca.

Como a energia magnética está sendo lançado, as partículas, inclusive elétrons e prótons , e núcleos pesados, são aquecidas e acelerados na atmosfera solar. A energia libertada durante um alargamento é tipicamente da ordem de 10 27 ergs por segundo. Ao grandes flares podem emitir até 10 32 ergs de energia. Esta energia é de dez milhões de vezes maior do que a energia libertada a partir de uma explosão vulcânica. Por outro lado, é inferior a um décimo do total de energia emitida pelo sol em cada segundo. A imagens abaixo do coronógrafo LASCO C2 e C3 do SOHO mostram uma erupção solar seguida de uma ejeção de massa coronal indicadas pelas setas.


Há tipicamente três fases para uma explosão solar. Primeiro é a fase precursora, onde a liberação de energia magnética é disparada. Uma suave emissão de raios X é detectada nesta fase. Na segunda fase ou impulsivo, prótons e elétrons são acelerados a energias superiores a 1 MeV . Durante o estágio impulsivo, ondas de rádio, raios X, e gama são emitidos. A acumulação gradual e decaimento de raios-X pode ser detectada na fase de decaimento. A duração destes estágios podem ser tão curto quanto alguns segundos ou tempos que duram uma hora.

As labaredas solares estendem-se para a camada do Sol chamado corona. A coroa é a atmosfera exterior do Sol, composta de gás altamente rarefeito. Este gás normalmente tem uma temperatura de alguns milhões de graus Kelvin. Dentro de uma chama, a temperatura normalmente atinge 10 ou 20 milhões de graus Kelvin. A coroa é visível em raios-X.
A frequência de chamas (erupções) coincide com o ciclo do Sol de anos 11. Quando o ciclo solar esta no mínimo, as regiões ativas são pequenas, rara e poucas chamas solares são detectados. Estes aumentam em número quando o Sol se aproxima do máxima do seu ciclo.
Uma pessoa não pode ver uma erupção solar, simplesmente olhando para o sol. (NUNCA OLHE DIRETAMENTE PARA O SOL). Flares são, de fato difícil de ver contra a emissão brilhante da fotosfera. Em vez disso, especializados instrumentos científicos são utilizados para detectar as assinaturas de radiação emitida durante uma crise. As emissões de rádio e as emissões ópticas podem ser observada com telescópios na Terra. Emissões energéticas, tais como raios-x e raios gama exigem telescópios localizados no espaço, uma vez que estas emissões não penetram na atmosfera da Terra.

sábado, 21 de abril de 2018

A Magnetosfera da Terra

O campo magnético da terra ou magnetosfera é bem parecido com o campo magnético de um ímã, pois suas linhas de campo saem do norte magnético e chegam ao polo sul magnético do planeta. Basicamente, é bipolar (ou seja, ele tem dois pólos, que são o norte e sul, polos magnéticos).


Na década de 1830 o matemático e astrônomo alemão Carl Friedrich Gauss estudou o campo magnético da Terra e concluiu que o principal componente bipolar teve sua origem no interior da Terra, em vez de fora. Ele demonstrou que o componente bipolar era uma função decrescente inversamente proporcional ao quadrado do raio da Terra, uma conclusão que levou os cientistas a especular sobre a origem do campo magnético terrestre, em termos de ferromagnetismo (como em uma enorme barra magnética) Nota: ferromagnetismo e rotação são geralmente desacreditados devido ao ponto de Curie (a altas temperatura o ferromagnetismo é destruído) Os modelos geomagnéticos formam a base da bússolas tradicionais, baseados em sistemas de navegação. Estes modelos fornecem uma imagem do campo magnético da Terra e como ela varia de um ponto na superfície da Terra para outro. O modelo do campo geomagnético Internacional de Referência (IGRF), compilado a partir de medidas magnéticas recolhidos por observatórios em muitos países, bem como as leituras feitas a partir de navios, aviões e satélites.

O modelo, derivado por meio da análise matemática de uma vasta quantidade de dados, representa o campo magnético gerado no núcleo da Terra, com variações de pequena escala na superfície e os efeitos solares. O modelo geomagnético desempenha um papel vital em vários tipos de levantamentos magnéticos, como os utilizados em exploração mineral e no mapeamento de falhas tectônicas que causam terremoto. O campo magnético da Terra é gerado dentro do seu núcleo de ferro fundido através de uma combinação do movimento térmico, rotação diária da Terra, e as forças elétricas no interior do núcleo. Estes elementos formam um dínamo que sustenta um campo magnético que é semelhante ao de uma barra magnética ligeiramente inclinado para uma linha que une o Norte ao Sul. O campo magnético da terra é observado e estudado de várias maneiras. Os observatórios magnéticos e suas localizações são mostrados na figura abaixo.


Como podemos ver no mapa, a distribuição espacial dos observatórios é bastante irregular, com uma concentração na Europa e uma carência em outras partes do mundo, em particular nas áreas oceânicas. Os satélites que fornecem dados vetoriais valiosos para modelagem geomagnética de campo são o Magsat (1979 a 1980), o Orsted e CHAMP que foram lançados em 1999 e 2000, respectivamente. Essa breve introdução ao estudo do geomagnetismo é necessária para entender como esse fenômeno pode proteger a terra das tempestades solares e etc.. A variação diária regular o campo magnético da Terra também apresenta distúrbios irregulares, e quando estes são grandes eles são chamados de tempestades magnéticas.

Esses distúrbios são causados pela interação do vento solar, com o campo magnético da Terra. O vento solar é uma corrente de partículas carregadas continuamente emitidos pelo Sol e sua pressão sobre o campo magnético da Terra cria uma região delimitada em torno da Terra, chamada de magnetosfera. Quando há um distúrbio no vento solar os sistemas atuais existentes dentro da magnetosfera são potencializados e causam perturbações magnéticas e tempestades. A Figura abaixo mostra uma imagem esquemática do vento solar e a magnetosfera da Terra.


Nota: Os cientistas sabem agora que o campo magnético da Terra está diminuindo a uma taxa de cerca de 0,5% por década. Se esta tendência continuar, o campo magnético pode reverter, isto é, o Pólo Norte torna-se o Pólo Sul e vice-versa. Tais eventos podem ocorrer uma vez a cada 300.000 anos mais ou menos, com a reversão real levando milhares de anos para ser concluído. No entanto, não se sabe se um declínio da força do campo magnético terrestre é inevitável.

O Vento Solar

O Vento Solar foi inicialmente estudado para explicar as auroras (perturbação geomagnética), e a inclinação das caudas dos cometas, e foi observado pela primeira vez pela espaçonave Russa Luna 2 em 1959 e Explorer 10 em 1961. O vento solar é um gás coronal ejetado do Sol.
O plasma da coroa solar é tão quente que a gravidade do Sol não pode segurá-lo por muito tempo. Em vez disso, as franjas superiores fluem em todas as direções, em um fluxo constante de partículas conhecidas como Vento Solar. Movendo-se a cerca de 400 km/s em média, o vento solar pode atingir a Terra de 3 a 4 dias. O vento solar consiste em partículas ionizadas e campos magnéticos produzindo tempestades magnéticas na magnetosfera da Terra.

O Vento solar exerce uma pressão sobre o campo magnético terrestre comprimindo-o e criando uma longa cauda do lado oposto. Esta “capa” magnética e complexa é conhecido como Magnetosfera. Quando as partículas provenientes do Sol (elétrons e prótons) impactam a Magnetosfera, geram correntes elétricas e plasmas na camada mais exterior da atmosfera terrestre, a Ionosfera, provocando as Auroras Boreais e Austrais por excitação dos átomos de gás. O sol ejeta 1 milhão de toneladas de matéria para o espaço (Plasma) a cada segundo. Chamamos este material de vento solar.

O vento solar é um fluxo de partículas carregadas e energizadas, principalmente elétrons e prótons, que flui para fora do Sol, através do sistema solar. A temperatura e velocidade podem variar ao longo do tempo, podendo atingir 300 a 800 km/s, a uma temperatura de 1 milhão de graus (Celsius). O vento solar se estende para o espaço cerca de 100 UA (uma unidades astronômicas = distâncias Terra-Sol = 150.000.000Km), o que equivale a distância do Sol até a órbita de Netuno ou até Plutão, ponto em que colide com o meio interestelar. A região onde o vento solar é dominante é conhecido como heliosfera. O vento solar é feito de hidrogênio (95%), Hélio (4%), carbono, nitrogênio, oxigênio, néon, magnésio, silício e ferro ( 1%).

Estes átomos estão todos na forma de íons positivos, o que significa que perderam elétrons porque as temperaturas são muito elevadas. Alguns eventos explosivos como erupções solares e ejeção de massa coronal (CME) no Sol podem produzir velocidades superiores a 1000 km/s. Efeitos das tempestades solares: A aurora boreal (as luzes do norte) e aurora austral (as luzes do sul). Interferência em rádios e televisões. Perigo para astronautas e naves espaciais. Oscilações de correntes nas usinas de força, prejudicando o fornecimento de energia elétrica. Sistemas de navegação. Satélites dependendo da sua altitude, os componentes eletrônicos, as baterias solares podem ser danificadas. O clima espacial afeta os satélites em missões de diversas formas, dependendo da órbita e da função do satélite. Muitos sistemas de comunicação utilizam a ionosfera para refletir sinais de rádio a longas distâncias.
Tempestades ionosféricas podem afetar a comunicação por rádio em todas as latitudes.

O vento solar pode ser dividido em vento solar rápido e vento solar lento. O vento rápido são típicos dos buracos coronais, regiões mais frias e menos densas da coroa solar, podendo atingir picos de velocidade da ordem de 900 km/s. Estão associados a linhas de campo magnético “abertas”, muito parecido com pólos magnético, facilitando assim o escape das partículas carregadas.
O vento lento se origina em regiões de baixas latitudes, portanto mais próximas ao equador do Sol, atingindo velocidades aproximadas de de 300 km/s. Em geral o vento solar lento é mais denso e apresenta um comportamento mais irregular. Sendo o vento solar um plasma altamente condutor, ele transporta consigo as linhas de campo magnético do Sol. Esse fenômeno é conhecido como “congelamento” das linhas de campo magnético.

O que é Plasma ?
Lembrando: os estados da matéria – sólido, líquido e gasoso, mas em 1879 o físico Inglês William Crookes identificou um quarto estado da matéria, uma forma de gás ionizado. O Universo é composto de aproximadamente 99% de plasma. No meio interestelar o plasma é de baixa temperatura e baixa densidade, enquanto no interior das estrelas ele é extremamente quente e denso. A auroras boreais são um exemplo clássico de plasma de baixa temperatura e baixa densidade. O Plasma pode ser acelerado e dirigido por campos elétricos e magnéticos. O Sol, como todas as estrelas que emitem luz se encontram no quarto estado da matéria. Na ionosfera terrestre, temos o surgimento das auroras, que é um plasma natural, assim como o fogo. São sistemas compostos por um grande número de partículas carregadas, distribuídas dentro de um certo volume onde haja a mesma quantidade de cargas positivas e negativas. Um modo de criar um plasma é aquecendo um gás. Tal aquecimento pode-se realizar por meio de um campo elétrico externo aplicado ao gás. A parte externa da atmosfera da Terra (magnetosfera) é constituída pelo plasma, o meio intestelar, ou seja o espaço entre estrelas e planetas, também é constituído por gás ionizado, mesmo que de uma densidade muito baixa. Um exemplo de plasma cósmico é o vento solar.


Efeitos das tempestades solares
A aurora boreal(as luzes do norte) e aurora austral (as luzes do sul).
Interferência em rádios e televisões.
Perigo para astronautas e naves espaciais.
Oscilações de correntes nas usinas de força, prejudicando o fornecimento de energia elétrica.
Sistemas de navegação
Satélites dependendo da sua altitude, os componentes eletrônicos, as baterias solares podem ser danificados. O clima espacial afeta os satélites em missões de diversas formas, dependendo da órbita e da função do satélite.
Muitos sistemas de comunicação utilizam a ionosfera para refletir sinais de rádio a longas distâncias.
Tempestades ionosféricas podem afetar a comunicação por rádio em todas as latitudes.

SOHO Sonda Solar

Muitas de minhas observações e monitoramento do Sol são feitas a partir do Observatório Heliosférico (SOHO), portando vamos entender o que é essa missão. O projeto Solar Heliospheric Observatory (SOHO) é um esforço cooperativo entre a Agência Espacial Europeia (ESA) e a NASA. O SOHO foi projetado para estudar a estrutura interna do Sol, sua atmosfera exterior e a origem do vento solar, isto é, o fluxo de gás altamente ionizado que sopra continuamente para fora do Sol através do Sistema Solar.


O SOHO foi lançado em 02 de dezembro de 1995. A nave espacial SOHO foi construída na Europa por uma equipe liderada pela Matra, e os instrumentos foram fornecidos por cientistas europeus e americanos. A NASA foi responsável pelo lançamento e agora é responsável pelas operações da missão. Grandes antenas de rádio ao redor do mundo formam a Rede de Espaço Profundo da NASA (figura abaixo) e são usados para controlar a nave espacial para além da órbita da Terra. O controle da missão é baseado em Goddard Space Flight Center em Maryland.


A nave espacial Soho é um observatório em posição privilegiada. Ficará atenta especialmente às ondas gigantes (ejeção de massa coronal) que agitam a superfície solar. É um meio indireto mas engenhoso de saber o que está se passando nas regiões interiores do Sol.
O Soho também faz medições constantes do chamado vento solar, uma corrente de plasma que está constantemente se desgarrando do Sol e indo para todo sistema solar.
Um coronógrafo é um dispositivo óptico que bloqueia a luz a partir do disco solar, tornando possível observar a coroa. Uma lente concentra-se em uma imagem do Sol para um mascaramento ou disco de ocultação que impede que a luz proveniente do Sol atrapalhe a observação com o telescópio.
A coronógrafo requer óptica de alta qualidade reunidos em uma atmosfera livre de poeira. Perto do nível do mar, um coronógrafo seria praticamente inútil, porque a luz difusa da atmosfera da Terra iria sobrecarregar a luz da corona. Os cientistas colocam esses instrumentos no alto das montanhas ou no espaço.
O coronógrafo foi inventado pelo astrônomo francês Bernard Lyot em 1939, para permitir que os astrônomos façam observações do gás quente (a coroa) ao redor do Sol sem ter que esperar por um eclipse solar total. Na verdade um coronógrafo simula um eclipse solar.

O equipamento esta a bordo do satélite SOHO, nele é possível a visualização de Flares Solares (erupções solares) e perdas de massa da coroa no espaço.
Aqui no site vamos monitorar as atividades solares, portanto temos que compreender o funcionamento desse instrumento. As imagens que serão mostradas aqui são do Observatório Heliosférico SOHO…Imagens LASCO 2 e LASCO 3
O LASCO (Coronógrafo Espectrométrico de Grande Ângulo) é capaz de obter imagens da coroa solar, bloqueando a luz que vem diretamente do Sol com um disco ocultante (o círculo escuro no centro da imagem), criando um eclipse artificial com o próprio instrumento. A posição do disco solar é indicada nas imagens pelo círculo branco. A coroa é a borda externa do Sol e pode ser vista somente durante um eclipse, o que é uma das razões pelas quais muitos cientistas são “caçadores de eclipses solares”. Ocasionalmente, uma ejeção de massa coronal pode ser vista à medida em que ela se afasta do Sol e cruza o campo de visão de ambas imagens. Se as imagens se tornarem com um aspecto granular com pontos brancos ou se um halo surgir ao redor da imagem, isto pode indicar que uma tempestade está se direcionando para a Terra.


A imagem LASCO C2 (em vermelho) mostra a cora solar interna até uma distância de 8.4 milhões de quilômetros do Sol. As imagens LASCO C3 (em azul) têm um campo de visão maior. Elas abrangem um escala correspondendo a 32 diâmetros do Sol. Colocando este comprimento em perspectiva, o diâmetro das imagens corresponde a 45 milhões de quilômetros de distância do Sol, ou metade do diâmetro da órbita de Mercúrio.

Filamentos e Proeminências

Os filamentos solares ou proeminências são nuvens densas de material suspenso acima da superfície do Sol por laços (loops) de campos magnéticos. Proeminências e filamentos são as mesmas coisas, as proeminências são vistas projetando-se acima do disco solar, ou na borda do sol, os filamentos se espalham pelo disco solar. Proeminências ou filamentos podem permanecer em um estado de calma ou de repouso por dias ou semanas.
No entanto, como os laços magnéticos que os suportam mudam lentamente, filamentos e proeminências podem entrar em erupção e subir acima do Sol ao longo de alguns minutos ou horas.

As proeminências são “ancoradas” na superfície do Sol, na fotosfera, e se estendem além da Coroa solar. Enquanto a corona consiste de gases ionizados extremamente quentes, conhecidos como plasma, que não emitem muita luz visível, as proeminências contêm plasma mais frio.
O plasma é um gás quente composto de hidrogênio e hélio eletricamente carregado. O plasma da proeminência flui ao longo de uma estrutura emaranhada e retorcida de campos magnéticos gerados por um “dínamo” interno do sol. Uma erupção ocorre quando essa estrutura torna-se instável e explode para fora, liberando o plasma.


Uma proeminência pode se estender por milhares de quilômetros, a maior delas foi observada pelo SOHO (Solar and Heliospheric Observatory), vista em 1997 e tinha aproximadamente 350.000 km, cerca de 28 vezes o diâmetro da Terra como mostra a imagem acima, a Terra Júpiter em escala. A massa contida dentro de uma proeminência equivale a 100 bilhões de toneladas de matéria.Os cientistas ainda estão pesquisando como e por que proeminências são formadas.