Mostrando postagens com marcador magnetosfera. Mostrar todas as postagens
Mostrando postagens com marcador magnetosfera. Mostrar todas as postagens

sábado, 9 de maio de 2020

Campo magnético da Terra

O campo magnético da terra ou magnetosfera é bem parecido com o campo magnético de um ímã, pois suas linhas de campo saem do norte magnético e chegam ao polo sul magnético do planeta. Basicamente, é bipolar (ou seja, ele tem dois pólos, que são o norte e sul, polos magnéticos).


Na década de 1830 o matemático e astrônomo alemão Carl Friedrich Gauss estudou o campo magnético da Terra e concluiu que o principal componente bipolar teve sua origem no interior da Terra, em vez de fora. Ele demonstrou que o componente bipolar era uma função decrescente inversamente proporcional ao quadrado do raio da Terra, uma conclusão que levou os cientistas a especular sobre a origem do campo magnético terrestre, em termos de ferromagnetismo (como em uma enorme barra magnética) Nota: ferromagnetismo e rotação são geralmente desacreditados devido ao ponto de Curie (a altas temperatura o ferromagnetismo é destruído) Os modelos geomagnéticos formam a base da bússolas tradicionais, baseados em sistemas de navegação. Estes modelos fornecem uma imagem do campo magnético da Terra e como ela varia de um ponto na superfície da Terra para outro. O modelo do campo geomagnético Internacional de Referência (IGRF), compilado a partir de medidas magnéticas recolhidos por observatórios em muitos países, bem como as leituras feitas a partir de navios, aviões e satélites
.
O modelo, derivado por meio da análise matemática de uma vasta quantidade de dados, representa o campo magnético gerado no núcleo da Terra, com variações de pequena escala na superfície e os efeitos solares. O modelo geomagnético desempenha um papel vital em vários tipos de levantamentos magnéticos, como os utilizados em exploração mineral e no mapeamento de falhas tectônicas que causam terremoto. O campo magnético da Terra é gerado dentro do seu núcleo de ferro fundido através de uma combinação do movimento térmico, rotação diária da Terra, e as forças elétricas no interior do núcleo. Estes elementos formam um dínamo que sustenta um campo magnético que é semelhante ao de uma barra magnética ligeiramente inclinado para uma linha que une o Norte ao Sul. O campo magnético da terra é observado e estudado de várias maneiras. Os observatórios magnéticos e suas localizações são mostrados na figura abaixo:


Como podemos ver no mapa, a distribuição espacial dos observatórios é bastante irregular, com uma concentração na Europa e uma carência em outras partes do mundo, em particular nas áreas oceânicas. Os satélites que fornecem dados vetoriais valiosos para modelagem geomagnética de campo são o Magsat (1979 a 1980), o Orsted e CHAMP que foram lançados em 1999 e 2000, respectivamente. Essa breve introdução ao estudo do geomagnetismo é nescessária para entender como esse fenômeno pode protejer a terra das tempestades solares e etc.. A variação diária regular o campo magnético da Terra também apresenta distúrbios irregulares, e quando estes são grandes eles são chamados de tempestades magnéticas. Esses distúrbios são causados pela interação do vento solar, com o campo magnético da Terra. O vento solar é uma corrente de partículas carregadas continuamente emitidos pelo Sol e sua pressão sobre o campo magnético da Terra cria uma região delimitada em torno da Terra, chamada de magnetosfera. Quando há um distúrbio no vento solar os sistemas atuais existentes dentro da magnetosfera são potencializadosdos e causam perturbações magnéticas e tempestades. A Figura abaixo mostra uma imagem esquemática do vento solar e a magnetosfera da Terra.


Nota: Os cientistas sabem agora que o campo magnético da Terra está diminuindo a uma taxa de cerca de 0,5% por década. Se esta tendência continuar, o campo magnético pode reverter, ito é, o Pólo Norte torna-se o Pólo Sul e vice-versa. Tais eventos podem ocorrer uma vez a cada 300.000 anos mais ou menos, com a reversão real levando milhares de anos para ser concluído. No entanto, não se sabe se um declínio da força do campo magnético terrestre é inevitável.

terça-feira, 25 de setembro de 2018

O que é clima espacial ?

O que é clima espacial ?
Setor da astrofísica que estuda as atividades na superfície solar, como as erupções solares que podem causar altos níveis de radiação no espaço sideral. Esta radiação pode vir como partículas ( plasma ) ou radiação eletromagnética ( luz ).
A energia do Sol é gerada pela fusão nuclear, isto é, processo no qual dois ou mais núcleos atômicos se juntam e formam um outro núcleo de maior número atômico. No caso do Sol , são necessários quatro átomos de hidrogênio para formar um átomo de hélio. Dados espectroscópicos indicam que o Sol é constituído de 73% de átomos de hidrogênio e 26% de átomos de hélio, sendo o restante fornecido pela contribuição de vários elementos.

Camadas do Sol
Núcleo – camada mais interior do Sol. A fusão nuclear, a qual cria a luz que o Sol emite, ocorre dentro do núcleo, atingindo temperaturas de aproximadamente 15 milhões de graus Celsius.
A  camada seguinte é a Radioativa – esta camada se parece como um isolador, e ajuda a manter a temperatura do núcleo.
A terceira camada é a Convectiva – a energia do Sol é transportada para fora do núcleo pela camada de convecção.
A próxima camada é a Fotosfera – é a parte do Sol que podemos ver com nossos olhos. As manchas solares – sunspots – aparecem na fotosfera.
A quinta camada é a Cromosfera -  mais escura que a fotosfera e pode ser vista apenas durante um eclipse. A cromosfera é onde as labaredas solares são melhor observadas.
A próxima camada é a Corona – é compreendida por duas camadas. A corona interior é um halo que se estende milhões de quilômetros distante do Sol. A Corona é muito mais quente que a fotosfera e produz raios X. A corona exterior se estende à Terra e mais distante, ainda.


Vamos estudar alguns detalhes:
Uma ejeção de massa coronal (CME) é uma enorme bolha de partículas de alta energia que explode da coroa solar e atravessa o espaço com alta velocidade. A nuvem de partículas carrega junto consigo um campo magnético. Se uma ejeção de massa coronal se move na direção da Terra, seu campo magnético interage com a magnetosfera da Terra. A magnetosfera da Terra nos protege de partículas carregadas do vento solar. São os chamados índice Kp, isto é, quando essa ejeção de massa coronal atinge a Terra.


Manchas solares são áreas escuras que aparecem na fotosfera do sol. As manchas aparecem escuras porque são mais frias, menos luminosa do que as áreas circundantes. A temperatura no centro de uma mancha é de cerca de 3.700 Kelvin (contra 6000 para as áreas circundantes).
As manchas solares podem durar várias semanas. Eles são observados principalmente em uma faixa de trinta graus de latitude em ambos os lados do equador. Dimensões típicas dos pontos estão na ordem de várias dezenas de milhares de quilômetros (o raio do Sol é 700,000 km).


Flare solar (erupção solar) é uma explosão no Sol que acontece quando energia armazenada em campos magnéticos entrelaçados  que se encontram habitualmente no topo de manchas solares é subitamente libertada. Um flare emite radiação que abrange uma grande gama de comprimentos de onda – do rádio aos raios-X e raios gama.
Os cientistas classificam as flares solares de acordo com a sua intensidade de energia na região dos raios-X – que vai do 1 a 8 Angstroms.
Categorias:
Classe X – são muito intensas; podem provocar apagões, danificar satélites, são tempestades de radiação de longa duração;
Classe M – são de intensidade intermédia; podem causar na Terra breves apagões rádio que afetam essencialmente as regiões polares; tempestades de radiação de pequena intensidade podem acontecer depois de uma flare de classe M;
Classe C – Por comparação com flares de classe X e M, as flares de classe C são fracas e com consequências menores na Terra.


sábado, 21 de abril de 2018

A Magnetosfera da Terra

O campo magnético da terra ou magnetosfera é bem parecido com o campo magnético de um ímã, pois suas linhas de campo saem do norte magnético e chegam ao polo sul magnético do planeta. Basicamente, é bipolar (ou seja, ele tem dois pólos, que são o norte e sul, polos magnéticos).


Na década de 1830 o matemático e astrônomo alemão Carl Friedrich Gauss estudou o campo magnético da Terra e concluiu que o principal componente bipolar teve sua origem no interior da Terra, em vez de fora. Ele demonstrou que o componente bipolar era uma função decrescente inversamente proporcional ao quadrado do raio da Terra, uma conclusão que levou os cientistas a especular sobre a origem do campo magnético terrestre, em termos de ferromagnetismo (como em uma enorme barra magnética) Nota: ferromagnetismo e rotação são geralmente desacreditados devido ao ponto de Curie (a altas temperatura o ferromagnetismo é destruído) Os modelos geomagnéticos formam a base da bússolas tradicionais, baseados em sistemas de navegação. Estes modelos fornecem uma imagem do campo magnético da Terra e como ela varia de um ponto na superfície da Terra para outro. O modelo do campo geomagnético Internacional de Referência (IGRF), compilado a partir de medidas magnéticas recolhidos por observatórios em muitos países, bem como as leituras feitas a partir de navios, aviões e satélites.

O modelo, derivado por meio da análise matemática de uma vasta quantidade de dados, representa o campo magnético gerado no núcleo da Terra, com variações de pequena escala na superfície e os efeitos solares. O modelo geomagnético desempenha um papel vital em vários tipos de levantamentos magnéticos, como os utilizados em exploração mineral e no mapeamento de falhas tectônicas que causam terremoto. O campo magnético da Terra é gerado dentro do seu núcleo de ferro fundido através de uma combinação do movimento térmico, rotação diária da Terra, e as forças elétricas no interior do núcleo. Estes elementos formam um dínamo que sustenta um campo magnético que é semelhante ao de uma barra magnética ligeiramente inclinado para uma linha que une o Norte ao Sul. O campo magnético da terra é observado e estudado de várias maneiras. Os observatórios magnéticos e suas localizações são mostrados na figura abaixo.


Como podemos ver no mapa, a distribuição espacial dos observatórios é bastante irregular, com uma concentração na Europa e uma carência em outras partes do mundo, em particular nas áreas oceânicas. Os satélites que fornecem dados vetoriais valiosos para modelagem geomagnética de campo são o Magsat (1979 a 1980), o Orsted e CHAMP que foram lançados em 1999 e 2000, respectivamente. Essa breve introdução ao estudo do geomagnetismo é necessária para entender como esse fenômeno pode proteger a terra das tempestades solares e etc.. A variação diária regular o campo magnético da Terra também apresenta distúrbios irregulares, e quando estes são grandes eles são chamados de tempestades magnéticas.

Esses distúrbios são causados pela interação do vento solar, com o campo magnético da Terra. O vento solar é uma corrente de partículas carregadas continuamente emitidos pelo Sol e sua pressão sobre o campo magnético da Terra cria uma região delimitada em torno da Terra, chamada de magnetosfera. Quando há um distúrbio no vento solar os sistemas atuais existentes dentro da magnetosfera são potencializados e causam perturbações magnéticas e tempestades. A Figura abaixo mostra uma imagem esquemática do vento solar e a magnetosfera da Terra.


Nota: Os cientistas sabem agora que o campo magnético da Terra está diminuindo a uma taxa de cerca de 0,5% por década. Se esta tendência continuar, o campo magnético pode reverter, isto é, o Pólo Norte torna-se o Pólo Sul e vice-versa. Tais eventos podem ocorrer uma vez a cada 300.000 anos mais ou menos, com a reversão real levando milhares de anos para ser concluído. No entanto, não se sabe se um declínio da força do campo magnético terrestre é inevitável.