A Escala de Richter, oficialmente chamado de “Escala de Magnitude Richter “é um valor numérico utilizado para medir a força de terremotos. É uma escala logarítmica, com base na amplitude das ondas captadas por uma sismógrafo.
Isto significa que a cada aumento de número inteiro na escala corresponde a um aumento absoluto por um fator de dez. Terremotos mensurados com pelo menos cerca de 2,0 na escala de Richter não são muito graves, e mal podem ser medidos.
Cada número da escala Richter é igual a um aumento de dez vezes na magnitude de um sismo. Em outras palavras, um tremor de 7,0 nesta escala tem uma grandeza de dez vezes maior do que um tremor 6.0 (32 vezes mais energia seria liberada).
A escala de magnitude compara as amplitudes de ondas em um sismograma, e não a força (energia liberada) dos terremotos. Assim, um terremoto de magnitude 8,7 é 794 vezes maior do que um terremoto de magnitude 5.8. medido em sismogramas, mas o terremoto de 8.7 é cerca de 23.000 vezes mais forte que o 5.8.
E de onde vem toda essa energia ?
Antes de um terremoto, as tensões se acumulam na crosta terrestre ao longo do tempo, fazendo com que a energia seja armazenada na forma de deformação elástica (como a de uma mola comprimida). Em última análise, esse estresse acumulado excede a resistência ao cisalhamento da crosta na zona de falha causando uma falha frágil súbita ou de ruptura.
Isto por sua vez provoca o movimento e uma libertação repentina da energia de deformação elástica armazenada sob a forma de ondas sísmicas. A tensão de cisalhamento é a componente de tensão em paralelo a uma determinada superfície, tal como um plano de falha, que resulta das forças aplicadas paralelamente à superfície ou a partir de forças remotas transmitidos através da rocha circundante.
Estudo e observação dos aspectos das ciências naturais como a astronomia, biologia, química, física as geociências na teoria e na prática. Incluindo temas relacionados ao clima espacial
segunda-feira, 4 de março de 2019
quinta-feira, 7 de fevereiro de 2019
A Via Láctea está realmente se deformando?
Durante séculos, astrônomos estudaram a Via Láctea para entender melhor seu tamanho e estrutura. Os instrumentos modernos produziram observações inestimáveis de nossa galáxia e de outras. Um estudo recente feito por uma equipe de astrônomos dos observatórios Astronômicos Nacionais da Academia Chinesa de Ciências (NAOC) mostraram que o disco da Via Láctea não é plano (como se pensava anteriormente). Com base em suas descobertas, parece que a Via Láctea se torna cada vez mais deformada e distorcida quanto mais longe se avança do núcleo.
O estudo que detalha suas descobertas apareceu recentemente na revista científica Nature, intitulada " Um mapa 3D intuitivo da precessão da urdidura galáctica traçada pelas cefeidas clássicas ". O estudo foi liderado por Xiaodian Chen, do Laboratório Principal de Astronomia Ótica do NAOC, e incluiu membros do Instituto Kavli de Astronomia e Astrofísica da Universidade de Pequim e da Universidade Normal da China.
Galáxias como a Via Láctea consistem em finos discos de estrelas que orbitam em torno de uma protuberância central a cada poucas centenas de milhões de anos. Nessa protuberância, a força gravitacional de centenas de bilhões de estrelas e matéria escura mantém a matéria e o gás da galáxia juntos. No entanto, nas regiões mais distantes da galáxia, os átomos de hidrogênio que compõem a maior parte do disco de gás não estão mais confinados a um plano rarefeito.
As cefeidas clássicas são um tipo particular de jovens brilhantes gigantes amarelas e supergigantes que são 4 a 20 vezes mais massivas que o nosso Sol e até 100.000 vezes mais luminosas. Isso implica que elas têm vida curta, que às vezes dura apenas alguns milhões de anos antes de esgotar seu combustível. Elas também experimentam pulsações que podem durar dias ou mesmo um mês, o que os torna muito confiáveis para medir as distâncias de outras galáxias.
Por causa de seu estudo, a equipe estabeleceu um modelo de Disco Galáctico em 3D com base nas posições de 1.339 Cefeidas Clássicas. A partir disso, eles foram capazes de fornecer fortes evidências de que o disco galáctico não está alinhado com o centro galáctico. De fato, quando visto de cima, o disco da Via Láctea aparecia em forma de S, com um lado curvando-se e o outro curvando-se para baixo.
Essas descobertas lembram o que os astrônomos observaram de uma dúzia de outras galáxias, que mostraram padrões espirais progressivamente distorcidos. Ao combinar seus resultados com essas observações, os pesquisadores concluíram que o padrão espiral da Via Láctea é provavelmente causado por forçantes rotacionais (também conhecidos como "torques") do disco interno.
Este último estudo forneceu um mapa atualizado dos movimentos estelares da nossa galáxia, que lançaria luz sobre as origens da Via Láctea. Além disso, também poderia reforçar nossa compreensão da formação de galáxias e da evolução do cosmos.
Fonte: National Astronomical Observatories of Chinese Academy of Sciences (NAOC) / Scientific Journal Nature.
![]() |
Usando informações do segundo lançamento de dados de Gaia, uma equipe de cientistas fez estimativas refinadas da massa da Via Láctea. Crédito: ESA / Gaia / DPAC
|
Galáxias como a Via Láctea consistem em finos discos de estrelas que orbitam em torno de uma protuberância central a cada poucas centenas de milhões de anos. Nessa protuberância, a força gravitacional de centenas de bilhões de estrelas e matéria escura mantém a matéria e o gás da galáxia juntos. No entanto, nas regiões mais distantes da galáxia, os átomos de hidrogênio que compõem a maior parte do disco de gás não estão mais confinados a um plano rarefeito.
As cefeidas clássicas são um tipo particular de jovens brilhantes gigantes amarelas e supergigantes que são 4 a 20 vezes mais massivas que o nosso Sol e até 100.000 vezes mais luminosas. Isso implica que elas têm vida curta, que às vezes dura apenas alguns milhões de anos antes de esgotar seu combustível. Elas também experimentam pulsações que podem durar dias ou mesmo um mês, o que os torna muito confiáveis para medir as distâncias de outras galáxias.
![]() |
galáxia da Via Láctea, perturbada pela interação das marés com uma galáxia anã, como previsto por simulações de N-corpo. Crédito: T. Mueller / C. Laporte / NASA / JPL-Caletch |
Essas descobertas lembram o que os astrônomos observaram de uma dúzia de outras galáxias, que mostraram padrões espirais progressivamente distorcidos. Ao combinar seus resultados com essas observações, os pesquisadores concluíram que o padrão espiral da Via Láctea é provavelmente causado por forçantes rotacionais (também conhecidos como "torques") do disco interno.
Este último estudo forneceu um mapa atualizado dos movimentos estelares da nossa galáxia, que lançaria luz sobre as origens da Via Láctea. Além disso, também poderia reforçar nossa compreensão da formação de galáxias e da evolução do cosmos.
Fonte: National Astronomical Observatories of Chinese Academy of Sciences (NAOC) / Scientific Journal Nature.
sábado, 2 de fevereiro de 2019
Técnica simples de cultivo de protozoários
Uma aula sobre o reino Protista, uma técnica simples de cultivo de protozoários.
Materiais:
Recipiente com tampa
1 ou 2 folhas de alface
Água sem cloro (pode ser obtida em um rio ou lago, ou utilize água de torneira previamente fervida e em temperatura ambiente).
Procedimento:
Coloque a água e as folhas de alface dentro do pote e tampe. Aguarde entre 3 e 5 dias.
Para manter a cultura de protozoários por mais tempo, substitua o alface por alface fresco e troque parte da água a cada 2 ou 3 dias.
Neste tipo de cultura é possível encontrar paramécios, amebas, rotíferos entre outros.
O vídeo abaixo foi feito com uma cultura de 4 dias. Uma amostra da “nata” superficial da água foi colocada sobre lâmina, coberta com lamínula e observada ao microscópio. O microscópio utilizado é muito simples.
Materiais:
Recipiente com tampa
1 ou 2 folhas de alface
Água sem cloro (pode ser obtida em um rio ou lago, ou utilize água de torneira previamente fervida e em temperatura ambiente).
Procedimento:
Coloque a água e as folhas de alface dentro do pote e tampe. Aguarde entre 3 e 5 dias.
Para manter a cultura de protozoários por mais tempo, substitua o alface por alface fresco e troque parte da água a cada 2 ou 3 dias.
Neste tipo de cultura é possível encontrar paramécios, amebas, rotíferos entre outros.
O vídeo abaixo foi feito com uma cultura de 4 dias. Uma amostra da “nata” superficial da água foi colocada sobre lâmina, coberta com lamínula e observada ao microscópio. O microscópio utilizado é muito simples.
quarta-feira, 30 de janeiro de 2019
Astrônomos continuam a observar as ondas de choque se expandirem da Supernova SN1987A
Quando as estrelas chegam ao fim de seu ciclo de vida, muitas expelem suas camadas externas em um processo explosivo conhecido como supernova. Embora os astrônomos tenham aprendido muito sobre esse fenômeno, graças a instrumentos sofisticados que são capazes de estudá-los em múltiplos comprimentos de onda, ainda há muito que não sabemos sobre supernovas e seus remanescentes.
Por exemplo, ainda há questões não resolvidas sobre os mecanismos que alimentam as ondas de choque resultantes de uma supernova. No entanto, uma equipe internacional de pesquisadores utilizou recentemente dados obtidos pelo Chandra X-Ray Observatory de uma supernova próxima (SN1987A) e novas simulações para medir a temperatura dos átomos na onda de choque resultante.
O estudo, intitulado "Collisionless shock heating of heavy ions in SN 1987A", apareceu recentemente na revista científica Nature. A equipe foi liderada por Marco Miceli e Salvatore Orlando da Universidade de Palermo, na Itália, e foi composta por membros do Instituto Nacional de Astrofísica (INAF), o Instituto de Problemas Aplicados em Mecânica e Matemática, e da Pennsylvania State e Northwestern University.
A equipe combinou observações do Chandra SN 1987A com simulações para medir a temperatura dos átomos na onda de choque da supernova. Ao fazê-lo, a equipe confirmou que a temperatura dos átomos está relacionada ao seu peso atômico, um resultado que responde a uma questão de longa data sobre as ondas de choque e os mecanismos que as alimentam.
Quando estrelas maiores sofrem colapso gravitacional, a explosão resultante impulsiona o material para fora a velocidades de até um décimo da velocidade da luz, empurrando ondas de choque para o gás interestelar circundante. Onde a onda de choque encontra o gás em movimento lento em torno da estrela, você tem a "frente de choque". Esta zona de transição aquece o gás frio em milhões de graus e leva à emissão de raios X que podem ser observados.
Para resolver isso, a equipe analisou a Supernova SN1987A, que está localizada na Grande Nuvem de Magalhães e se tornou aparente em 1987. Além de ser a primeira supernova visível a olho nu desde a Supernova de Kepler (1604), foi a primeira primeiro a ser estudada em todos os comprimentos de onda da luz (de ondas de rádio a raios X e ondas gama) com telescópios modernos.
Enquanto os modelos anteriores do SN 1987A usavam tipicamente observações únicas, a equipe de pesquisa usou simulações numéricas tridimensionais para mostrar a evolução da supernova. Eles então compararam estas observações de raios X fornecidas pelo Chandra para medir com precisão as temperaturas atômicas, o que confirmou suas expectativas.
Este último estudo representa um passo significativo para os astrônomos, aproximando-os de uma compreensão da mecânica de uma supernova. Ao desvendar seus segredos, podemos aprender mais sobre um processo que é fundamental para a evolução cósmica, que é como a morte das estrelas impacta o Universo circundante.
Fonte: Scientific Journal Nature/Universe Today
Por exemplo, ainda há questões não resolvidas sobre os mecanismos que alimentam as ondas de choque resultantes de uma supernova. No entanto, uma equipe internacional de pesquisadores utilizou recentemente dados obtidos pelo Chandra X-Ray Observatory de uma supernova próxima (SN1987A) e novas simulações para medir a temperatura dos átomos na onda de choque resultante.
O estudo, intitulado "Collisionless shock heating of heavy ions in SN 1987A", apareceu recentemente na revista científica Nature. A equipe foi liderada por Marco Miceli e Salvatore Orlando da Universidade de Palermo, na Itália, e foi composta por membros do Instituto Nacional de Astrofísica (INAF), o Instituto de Problemas Aplicados em Mecânica e Matemática, e da Pennsylvania State e Northwestern University.
A equipe combinou observações do Chandra SN 1987A com simulações para medir a temperatura dos átomos na onda de choque da supernova. Ao fazê-lo, a equipe confirmou que a temperatura dos átomos está relacionada ao seu peso atômico, um resultado que responde a uma questão de longa data sobre as ondas de choque e os mecanismos que as alimentam.
Quando estrelas maiores sofrem colapso gravitacional, a explosão resultante impulsiona o material para fora a velocidades de até um décimo da velocidade da luz, empurrando ondas de choque para o gás interestelar circundante. Onde a onda de choque encontra o gás em movimento lento em torno da estrela, você tem a "frente de choque". Esta zona de transição aquece o gás frio em milhões de graus e leva à emissão de raios X que podem ser observados.
Para resolver isso, a equipe analisou a Supernova SN1987A, que está localizada na Grande Nuvem de Magalhães e se tornou aparente em 1987. Além de ser a primeira supernova visível a olho nu desde a Supernova de Kepler (1604), foi a primeira primeiro a ser estudada em todos os comprimentos de onda da luz (de ondas de rádio a raios X e ondas gama) com telescópios modernos.
Enquanto os modelos anteriores do SN 1987A usavam tipicamente observações únicas, a equipe de pesquisa usou simulações numéricas tridimensionais para mostrar a evolução da supernova. Eles então compararam estas observações de raios X fornecidas pelo Chandra para medir com precisão as temperaturas atômicas, o que confirmou suas expectativas.
Este último estudo representa um passo significativo para os astrônomos, aproximando-os de uma compreensão da mecânica de uma supernova. Ao desvendar seus segredos, podemos aprender mais sobre um processo que é fundamental para a evolução cósmica, que é como a morte das estrelas impacta o Universo circundante.
Fonte: Scientific Journal Nature/Universe Today
terça-feira, 29 de janeiro de 2019
A missão New Horizons da NASA e a foto de alta resolução do objeto Thule (2014 MU69)
Em 31 de dezembro de 2018, a missão New Horizons da NASA fez história ao ser a primeira nave espacial a se encontrar com um Objeto do Cinturão de Kuiper (KBO) chamado Ultima Thule (2014 MU69). Isso aconteceu há cerca de dois anos e meio depois que a New Horizons se tornou a primeira missão na história a conduzir um sobrevôo de Plutão.
E agora, graças a uma equipe de pesquisadores do Laboratório de Física Aplicada da Universidade John Hopkins (JHUAPL), essa imagem foi aprimorada para fornecer uma visão mais detalhada e de alta resolução do Ultima Thule. Graças a esses esforços, os cientistas podem aprender mais sobre a história desse objeto e como ele foi formado, o que poderia nos dizer muito sobre os primórdios do Sistema Solar.
A imagem original foi obtida pela Câmera Multicolor Visible Imaging (MVIC) um dos dois componentes que compõem o telescópio Ralph da New Horizons, em 1º de janeiro de 2019, quando a espaçonave estava a 6.700 km de Ultima Thule. A imagem tinha uma resolução de 135 metros por pixel quando foi armazenada e depois transmitida de volta à Terra como parte do pacote de dados da espaçonave (de 18 a 19 de janeiro).
A imagem foi então submetida a um processo conhecido como deconvolução, onde as imagens são aprimoradas para melhorar detalhes finos (o que também amplifica a granulação das imagens quando vistas em alto contraste). A imagem deconvoluta resultante revela novos detalhes topográficos ao longo do terminador (limite dia / noite) perto do topo, graças ao padrão de iluminação oblíqua.
Os detalhes que são mais aparentes nesta foto aprimorada incluem numerosos pequenos buracos que tem até cerca de 700 metros de diâmetro. A grande característica no menor dos dois lobos, que mede 7 km de diâmetro, também parece ser uma depressão profunda. Ambos os lóbulos também mostram muitos padrões intrigantes de luz e escuridão, sem mencionar o brilhante “colar” onde os dois lóbulos estão conectados.
No momento, não está claro como essas características e padrões se formaram, mas existem várias possibilidades que podem revelar muito sobre a história do objeto. Por exemplo, as depressões profundas podem ser crateras de impacto resultantes de colisões que ocorreram ao longo do tempo de vida do objeto de 4,45 bilhões de anos. Ou podem ser o resultado de outros processos, como o colapso interno ou a ventilação de materiais voláteis no início de sua história.
Outros estudos dessas características podem revelar pistas sobre como a Ultima Thule foi montada durante a formação do Sistema Solar, há 4,5 bilhões de anos. Atualmente, a New Horizons esta a aproximadamente 6,64 bilhões de quilômetros da Terra e se move em direção à borda do Sistema Solar, a mais de 50.700 km por hora.
Exceto extensões adicionais, a missão da New Horizons está programada para operar até 2021. Nesse tempo, espera-se que a missão seja capaz de se encontrar e estudar objetos adicionais do Cinturão de Kuiper (KBOs), que revelarão mais sobre a história mais antiga de nosso sistema solar.
Fonte: NASA/NewHorizons/Universe Todday.
E agora, graças a uma equipe de pesquisadores do Laboratório de Física Aplicada da Universidade John Hopkins (JHUAPL), essa imagem foi aprimorada para fornecer uma visão mais detalhada e de alta resolução do Ultima Thule. Graças a esses esforços, os cientistas podem aprender mais sobre a história desse objeto e como ele foi formado, o que poderia nos dizer muito sobre os primórdios do Sistema Solar.
A imagem original foi obtida pela Câmera Multicolor Visible Imaging (MVIC) um dos dois componentes que compõem o telescópio Ralph da New Horizons, em 1º de janeiro de 2019, quando a espaçonave estava a 6.700 km de Ultima Thule. A imagem tinha uma resolução de 135 metros por pixel quando foi armazenada e depois transmitida de volta à Terra como parte do pacote de dados da espaçonave (de 18 a 19 de janeiro).
A imagem foi então submetida a um processo conhecido como deconvolução, onde as imagens são aprimoradas para melhorar detalhes finos (o que também amplifica a granulação das imagens quando vistas em alto contraste). A imagem deconvoluta resultante revela novos detalhes topográficos ao longo do terminador (limite dia / noite) perto do topo, graças ao padrão de iluminação oblíqua.
Os detalhes que são mais aparentes nesta foto aprimorada incluem numerosos pequenos buracos que tem até cerca de 700 metros de diâmetro. A grande característica no menor dos dois lobos, que mede 7 km de diâmetro, também parece ser uma depressão profunda. Ambos os lóbulos também mostram muitos padrões intrigantes de luz e escuridão, sem mencionar o brilhante “colar” onde os dois lóbulos estão conectados.
No momento, não está claro como essas características e padrões se formaram, mas existem várias possibilidades que podem revelar muito sobre a história do objeto. Por exemplo, as depressões profundas podem ser crateras de impacto resultantes de colisões que ocorreram ao longo do tempo de vida do objeto de 4,45 bilhões de anos. Ou podem ser o resultado de outros processos, como o colapso interno ou a ventilação de materiais voláteis no início de sua história.
Outros estudos dessas características podem revelar pistas sobre como a Ultima Thule foi montada durante a formação do Sistema Solar, há 4,5 bilhões de anos. Atualmente, a New Horizons esta a aproximadamente 6,64 bilhões de quilômetros da Terra e se move em direção à borda do Sistema Solar, a mais de 50.700 km por hora.
Exceto extensões adicionais, a missão da New Horizons está programada para operar até 2021. Nesse tempo, espera-se que a missão seja capaz de se encontrar e estudar objetos adicionais do Cinturão de Kuiper (KBOs), que revelarão mais sobre a história mais antiga de nosso sistema solar.
Fonte: NASA/NewHorizons/Universe Todday.
Assinar:
Postagens (Atom)
-
Escala Mohs (1824) estabeleceu uma escala de 10 minerais de modo que esses valores podem ser estimado por comparação da dureza relativa de q...
-
Em nossas publicações constantemente vamos nos referir a campos magnéticos e eletromagnetismos. Esta breve introdução vai dar um noção dos c...
-
A Escala de Richter, oficialmente chamado de “Escala de Magnitude Richter “é um valor numérico utilizado para medir a força de terremotos. É...