Mostrando postagens com marcador velocidade. Mostrar todas as postagens
Mostrando postagens com marcador velocidade. Mostrar todas as postagens

sexta-feira, 19 de outubro de 2018

A Velocidade da Luz

A velocidade da luz desempenha um papel central na astronomia e na física. De acordo com a Teoria da Relatividade de Einstein, nada no nosso universo pode exceder a velocidade da luz, portanto, é uma espécie de limite de velocidade cósmica. A luz é parte do que é chamado de espectro eletromagnético, que inclui a radiação infravermelha, ondas de rádio, raios gama, raios-X, radiação ultravioleta, e assim por diante. Todos estes são uma forma de energia, desta forma, as radiação eletromagnética viajam todos na velocidade da luz.

O que costumamos chamar de “velocidade da luz” é realmente a velocidade da luz no vácuo (ausência de matéria). Na realidade, a velocidade da luz depende do material em que a luz se move. Assim, por exemplo, a luz se move mais devagar no vidro que no ar, e em ambos os casos a velocidade é menor que no vácuo.

A primeira medição real da velocidade da luz foram feitas em 1676, por um astrônomo dinamarquês, Ole Römer , trabalhando no Observatório de Paris. Ele tinha feito um estudo sistemático de Io, uma das luas de Júpiter, que foi eclipsada por Júpiter em intervalos regulares.
Io tem uma órbita circular a uma taxa constante. Na verdade, Römer observando por vários meses e notou que os eclipses iam ficando mais e mais para trás no tempo. Em setembro de 1676, ele previu corretamente um eclipse em 09 de novembro teriam 10 minutos de atraso. E foi o que realmente aconteceu, para a surpresa de seus colegas céticos no Observatório Real em Paris.

Duas semanas mais tarde, disse-lhes o que estava acontecendo: Como a Terra e Júpiter mudam suas órbitas, a distância entre eles variava. A luz de Io (luz solar refletida) levou um tempo para chegar a terra, e levou mais tempo quando a terra foi mais longe em sua órbita. Quando a Terra estava mais longe de Júpiter, havia uma distância extra para a luz viajar igual ao diâmetro da órbita da Terra em comparação com o ponto de maior aproximação. Os eclipses observados foram mais longe nos tempos previsto quando a Terra foi mais longe de Júpiter. De suas observações, Römer concluiu que a luz levou cerca de 22 minutos para cruzar a órbita da Terra. É claro que, para encontrar a velocidade da luz era também necessário conhecer a distância da Terra ao sol.

Como a luz viaja a uma velocidade grande, mas finita, é preciso um tempo para que a luz viaje a grandes distâncias. Assim, quando vemos a luz de objetos muito distantes no universo, na verdade estamos vendo a luz emitida por eles há muito tempo: nós vemos, literalmente, como eram no passado distante.
Lembrando que a velocidade da luz é de 299.792,458 km/s.
Assista o vídeo,eu recomendo.


terça-feira, 16 de outubro de 2018

Velocidade de Escape

Existe uma força no Universo que atua sobre tudo, desde sistemas galácticos, passando pelos buracos negros indo até o nível atômico. Convivemos com ela todos os dias mas geralmente essa “força” passa despercebida, mas ela é responsável juntamente com o eletromagnetismo (magnetismo) a força nuclear forte a a força nuclear fraca por todos os eventos conhecidos no Cosmos, A Gravidade…Sabemos quase nada sobre isso, e tudo começou com Sir Isaac Newton…Lembrando que Newton explicou a Lei da Gravitação, mas não conseguiu definir o que é a gravidade, mas isso é tema para o Prof. Albert Einstein…..veremos depois.

Todos nós já ouvimos uma história popular que Newton estava sentado debaixo de uma macieira, quanto uma maçã caiu em sua cabeça, e de repente, sem mais nem menos ele “imaginou” A Lei da Gravitação Universal. Como em todas as lendas, esta não é certamente verdadeira. A ideia da gravitação só tomou forma depois de um longo caminho de 20 anos de estudos e observações, mas alguns elementos da história, tem alguma relação.

Provavelmente a versão mais plausível da história é que Newton, ao observar uma maçã caindo de uma árvore, começou a pensar ao longo das seguintes linhas: A maçã é acelerada, já que houve uma mudanças de velocidade a partir do zero. Assim, pela Lei 2ª de Newton, deve haver uma força que age sobre a maçã para causar esta aceleração. Vamos chamar essa força de “gravidade”.
Antes de Newton e Galileu, a maioria das pessoas achava que as forças que causam os movimentos na Terra e as forças que causam os movimentos das estrelas e planetas eram diferentes. Isaac Newton percebeu que as mesmas forças e as mesmas leis da física se aplicam em todo o universo. Assim, a sua lei da gravidade é chamada a Lei da Gravitação Universal.

Newton imaginou a seguinte situação: um canhão no topo de uma montanha muito alta. Uma bala de canhão é disparado, que viaja por uma certa distância, mas inviavelmente a gravidade ira puxa-la para baixo e atingindo o chão. Em um segundo tiro, dessa vez com mais pólvora, a bala ira viaja uma distância maior antes de atingir o chão e assim por diante, quanto maior a velocidade da bala mais tempo ela iria demorar para cair. Em cada caso, a bala segue um percurso curvo para o chão.
A superfície da terra também é curva. Newton sugeriu – a curvatura da trajetória da bala seria o mesmo que a curvatura da terra. A bala de canhão estaria caindo, mas nunca chegaria ao chão.
Esta é a definição de uma órbita. A dinâmica da bala de canhão e a força da gravidade entram em equilíbrio. A bala do canhão está em um estado contínuo de queda livre, e permanecerá assim até que uma outra força atue sobre ela.


A NASA tem um aplicativo muito interessante que mostra o canhão de Newton em ação. Você pode usar diferentes quantidades de pólvora e ver a trajetória da bala do canhão. [Ver aqui]

O aumento da velocidade pode resultar em uma órbita. Note que as órbitas não precisam de ser circular
O aumento da velocidade pode resultar em uma órbita. Note que as órbitas não precisam de ser circular
Que velocidade essa bala de canhão teria que atingir para entrar em órbita ?
Bem resumidamente….
Velocidade de escape é definido como sendo a velocidade mínima que um objeto deve atingir a fim de escapar do campo gravitacional da Terra ou qualquer outro planeta variando amplamente com base na massa do corpo. A velocidade de escape da Terra é 11.2 km/s (25,022 mph ou cerca de Mach 37), que só pode ser alcançado por foguetes poderosos.

Velocidade de escape em alguns astros:
Sol…………………. 617,7 km / s (55 x que o da Terra)
Mercúrio…………..4,25 km / s
Vênus………………0,46 km / s
Terra……………….11,2 km / s
Lua………………….2,38 km / s
Marte……………….5,027 km / s
Júpiter……………..59,5 km / s
Saturno……………35,5 km / s
Urano………………21,3 km / s
Netuno…………….23,5 km / s
Plutão……………..1,27 km / s

Nota: Os dois primeiros lançamentos tripulados do programa espacial americano, em 1961, não eram voos orbitais. Os foguetes disponíveis na época eram poderosos o suficiente para levar astronautas ao espaço, mas não poderia fornecer a velocidade necessária para alcançar a órbita. Estes voos eram conhecidos como voos suborbitais.

sábado, 15 de setembro de 2018

Teorema de Bell

Antes de “falar” nas esquisitices elegantes da teoria quântica, vamos saber porque nada pode ser mais rápido do que a luz…
1- A matéria se torna mais maciça a medida que acelera, e na velocidade da luz, um objeto teria massa infinita.
2- Acelerar um objeto de massa em repouso não-zero até a velocidade da luz exigiria tempo infinito com qualquer aceleração finita, ou aceleração infinita por um período finito de tempo.
3-Também, tal aceleração requer energia infinita. Portanto, ir além da velocidade da luz num espaço homogêneo exigiria mais do que energia infinita, o que não é uma ideia sensata.
4- Observadores em movimento relativo irão discordar sobre qual de dois eventos quaisquer, separados por um intervalo de espaço, ocorre primeiro. Em outras palavras, qualquer viagem mais rápida do que a luz em qualquer referencial de inércia significará voltar para trás no tempo em qualquer outro quadro de referência igualmente válido…..

Muito bem, agora vamos a ela, A Teoria Quântica de modo bem resumido…
Um das coisas mais estranhos da teoria quântica é que é impossível saber certas coisas simultaneamente, como o momento e a posição de uma partícula, conhecer uma dessas propriedades afeta a precisão com que você pode conhecer a outra.
Isto é conhecido como o Princípio da Incerteza de Heisenberg, em homenagem ao físico alemão Werner Heisenberg.
Outro aspecto estranho é o fenômeno da não-localidade, que se mostra no bem conhecido entrelaçamento quântico.
Quando duas partículas ficam entrelaçadas, elas se comportam como se estivessem coordenadas entre si, como se estivessem trocando informações à distância, de uma forma totalmente estranha à intuição clássica sobre partículas fisicamente separadas.
A não-localidade determina como duas partículas distantes podem coordenar suas ações sem trocar informações. Os físicos acreditam que, mesmo na mecânica quântica, a informação não pode viajar mais rápido do que a luz.

A mecânica quântica permite que duas partículas se coordenem muito melhor do que seria possível se elas obedecessem às leis da física clássica. É possível ter teorias que permitem que partículas separadas e distantes uma da outra coordenem suas ações muito melhor do que a natureza permite e sem depender de que a informação viaje mais rápido do que a luz.

Uma experiência de raciocínio:
Vamos gerar duas partículas e deixar uma delas aqui na Terra enquanto que  mandamos a outra partícula para uma galáxia distante 2 milhos de anos-luz. Sempre que a rotação de uma partícula for para a esquerda a rotação da outra partícula sera para a direita, já que a rotação total das duas partículas tem que ser ZERO (lei do momento angular), mas de acordo com a teoria quântica o valor da rotação não é determinado até ser feita uma medição. Então vamos deixar a partícula que ficou aqui na Terra girar para a esquerda, como é que a outra partícula que esta a 2 milhões de anos-luz sabe disso e automaticamente gira para a direita. A informação teria que viajar mais rápido que a luz…!!!. Segundo Einstein a teoria quântica estava incompleta. Ou será que havia alguma coisa que não sabíamos…?

Bell provou matematicamente que de alguma forma aquela partícula em uma galáxia distante sabia o que a outra partícula estava fazendo…..
Algum tempo depois o Teorema de Bell foi provado em laboratório. Foram enviadas duas partículas em direções opostas. Foi mudada a polarização de uma das partículas e imediatamente a outra partícula mudou sua polarização para oposta a da primeira…..Então o que significa isso ?……Comunicação mais rápida que a luz…???…Em breve iremos tratar do tema “Totalidade sem Costura”
O teorema de Bell é amplo e toca em todas as ideias básicas da ciência. Ele diz que podemos estar conectados a todos os pontos do universo, o todo com o tudo. Toca no conceito de Tempo. No centro da mecânica quântica esta a incerteza ou o Principio da Incerteza. Na natureza existe a incerteza por toda parte. Deve ser terrível ter certeza de tudo, mesmo porque a certeza é efêmera e enfadonha. Assista o vídeo....eu recomendo....!


sexta-feira, 17 de agosto de 2018

Como se formam os Tornados

Algumas perguntas são inevitáveis, como por exemplo: as temperaturas globais mais elevadas podem estar contribuindo para essas ocorrências ? A resposta é: não há uma correlação estatística entre o número de tornados e aumento das temperaturas.
Tornados fazem parte de uma severa tempestade convectiva, e estas tempestades ocorrem por toda a Terra, os tornados não estão limitados a qualquer localização geográfica específica. Na verdade, os tornados foram documentados em todos os estados dos Estados Unidos, e em todos os continentes, com exceção da Antártica (mesmo lá, a ocorrência de tornado não é impossível). Na verdade, sempre que as condições atmosféricas são exatamente propicias, a ocorrência de uma tempestade é possível.

No entanto, algumas partes do mundo, são muito mais propensas a tornado que outras. Globalmente, as latitudes médias entre 30 ° e 50 ° norte ou sul, proporcionam o ambiente mais favorável para tornadogenesis. Esta é a região em que o frio do ar polar encontra contra ar quente subtropicais, muitas vezes gerando precipitação convectivas ao longo dos limites de colisão.


Além disso, o ar nas latitudes médias, muitas vezes flui em diferentes velocidades e direções e em diferentes níveis da troposfera, facilitando o desenvolvimento de rotação dentro de uma célula de tempestade. Curiosamente, os locais que recebem os tornados mais frequentes são também consideradas as zonas agrícolas mais férteis do mundo.Simplesmente, como resultado do grande número de tempestades convectivas e do ambiente favorável, são aumentadas as probabilidades de que algumas destas tempestades produzirem tornados.

Os Estados Unidos lideram a lista, com uma média de mais de mil tornados registrados a cada ano e em segundo lugar é o Canadá, com cerca de 100 por ano. Outros locais que passam por ocorrências de tornado frequentes incluem o norte da Europa, Ásia ocidental, Bangladesh, Japão, Austrália, Nova Zelândia, China, África do Sul e Argentina e agora no Brasil. Na verdade, o Reino Unido tem mais tornados, em relação à sua área de terra, do que qualquer outro país. Felizmente, a maioria dos tornados no Reino Unido são relativamente fracos.
Referência: http://www.ncdc.noaa.gov
Assista ao vídeo e entada como se formam os tornados, eu recomendo:


sábado, 21 de abril de 2018

O Vento Solar

O Vento Solar foi inicialmente estudado para explicar as auroras (perturbação geomagnética), e a inclinação das caudas dos cometas, e foi observado pela primeira vez pela espaçonave Russa Luna 2 em 1959 e Explorer 10 em 1961. O vento solar é um gás coronal ejetado do Sol.
O plasma da coroa solar é tão quente que a gravidade do Sol não pode segurá-lo por muito tempo. Em vez disso, as franjas superiores fluem em todas as direções, em um fluxo constante de partículas conhecidas como Vento Solar. Movendo-se a cerca de 400 km/s em média, o vento solar pode atingir a Terra de 3 a 4 dias. O vento solar consiste em partículas ionizadas e campos magnéticos produzindo tempestades magnéticas na magnetosfera da Terra.

O Vento solar exerce uma pressão sobre o campo magnético terrestre comprimindo-o e criando uma longa cauda do lado oposto. Esta “capa” magnética e complexa é conhecido como Magnetosfera. Quando as partículas provenientes do Sol (elétrons e prótons) impactam a Magnetosfera, geram correntes elétricas e plasmas na camada mais exterior da atmosfera terrestre, a Ionosfera, provocando as Auroras Boreais e Austrais por excitação dos átomos de gás. O sol ejeta 1 milhão de toneladas de matéria para o espaço (Plasma) a cada segundo. Chamamos este material de vento solar.

O vento solar é um fluxo de partículas carregadas e energizadas, principalmente elétrons e prótons, que flui para fora do Sol, através do sistema solar. A temperatura e velocidade podem variar ao longo do tempo, podendo atingir 300 a 800 km/s, a uma temperatura de 1 milhão de graus (Celsius). O vento solar se estende para o espaço cerca de 100 UA (uma unidades astronômicas = distâncias Terra-Sol = 150.000.000Km), o que equivale a distância do Sol até a órbita de Netuno ou até Plutão, ponto em que colide com o meio interestelar. A região onde o vento solar é dominante é conhecido como heliosfera. O vento solar é feito de hidrogênio (95%), Hélio (4%), carbono, nitrogênio, oxigênio, néon, magnésio, silício e ferro ( 1%).

Estes átomos estão todos na forma de íons positivos, o que significa que perderam elétrons porque as temperaturas são muito elevadas. Alguns eventos explosivos como erupções solares e ejeção de massa coronal (CME) no Sol podem produzir velocidades superiores a 1000 km/s. Efeitos das tempestades solares: A aurora boreal (as luzes do norte) e aurora austral (as luzes do sul). Interferência em rádios e televisões. Perigo para astronautas e naves espaciais. Oscilações de correntes nas usinas de força, prejudicando o fornecimento de energia elétrica. Sistemas de navegação. Satélites dependendo da sua altitude, os componentes eletrônicos, as baterias solares podem ser danificadas. O clima espacial afeta os satélites em missões de diversas formas, dependendo da órbita e da função do satélite. Muitos sistemas de comunicação utilizam a ionosfera para refletir sinais de rádio a longas distâncias.
Tempestades ionosféricas podem afetar a comunicação por rádio em todas as latitudes.

O vento solar pode ser dividido em vento solar rápido e vento solar lento. O vento rápido são típicos dos buracos coronais, regiões mais frias e menos densas da coroa solar, podendo atingir picos de velocidade da ordem de 900 km/s. Estão associados a linhas de campo magnético “abertas”, muito parecido com pólos magnético, facilitando assim o escape das partículas carregadas.
O vento lento se origina em regiões de baixas latitudes, portanto mais próximas ao equador do Sol, atingindo velocidades aproximadas de de 300 km/s. Em geral o vento solar lento é mais denso e apresenta um comportamento mais irregular. Sendo o vento solar um plasma altamente condutor, ele transporta consigo as linhas de campo magnético do Sol. Esse fenômeno é conhecido como “congelamento” das linhas de campo magnético.

O que é Plasma ?
Lembrando: os estados da matéria – sólido, líquido e gasoso, mas em 1879 o físico Inglês William Crookes identificou um quarto estado da matéria, uma forma de gás ionizado. O Universo é composto de aproximadamente 99% de plasma. No meio interestelar o plasma é de baixa temperatura e baixa densidade, enquanto no interior das estrelas ele é extremamente quente e denso. A auroras boreais são um exemplo clássico de plasma de baixa temperatura e baixa densidade. O Plasma pode ser acelerado e dirigido por campos elétricos e magnéticos. O Sol, como todas as estrelas que emitem luz se encontram no quarto estado da matéria. Na ionosfera terrestre, temos o surgimento das auroras, que é um plasma natural, assim como o fogo. São sistemas compostos por um grande número de partículas carregadas, distribuídas dentro de um certo volume onde haja a mesma quantidade de cargas positivas e negativas. Um modo de criar um plasma é aquecendo um gás. Tal aquecimento pode-se realizar por meio de um campo elétrico externo aplicado ao gás. A parte externa da atmosfera da Terra (magnetosfera) é constituída pelo plasma, o meio intestelar, ou seja o espaço entre estrelas e planetas, também é constituído por gás ionizado, mesmo que de uma densidade muito baixa. Um exemplo de plasma cósmico é o vento solar.


Efeitos das tempestades solares
A aurora boreal(as luzes do norte) e aurora austral (as luzes do sul).
Interferência em rádios e televisões.
Perigo para astronautas e naves espaciais.
Oscilações de correntes nas usinas de força, prejudicando o fornecimento de energia elétrica.
Sistemas de navegação
Satélites dependendo da sua altitude, os componentes eletrônicos, as baterias solares podem ser danificados. O clima espacial afeta os satélites em missões de diversas formas, dependendo da órbita e da função do satélite.
Muitos sistemas de comunicação utilizam a ionosfera para refletir sinais de rádio a longas distâncias.
Tempestades ionosféricas podem afetar a comunicação por rádio em todas as latitudes.